152 research outputs found

    Human Gyrovirus Apoptin shows a similar subcellular distribution pattern and apoptosis induction as the chicken anaemia virus derived VP3/Apoptin

    Get PDF
    The chicken anaemia virus-derived protein Apoptin/VP3 (CAV-Apoptin) has the important ability to induce tumour-selective apoptosis in a variety of human cancer cells. Recently the first human Gyrovirus (HGyV) was isolated from a human skin swab. It shows significant structural and organisational resemblance to CAV and encodes a homologue of CAV-Apoptin/VP3. Using overlapping primers we constructed a synthetic human Gyrovirus Apoptin (HGyV-Apoptin) fused to green fluorescent protein in order to compare its apoptotic function in various human cancer cell lines to CAV-Apoptin. HGyV-Apoptin displayed a similar subcellular expression pattern as observed for CAV-Apoptin, marked by translocation to the nucleus of cancer cells, although it is predominantly located in the cytosol of normal human cells. Furthermore, expression of either HGyV-Apoptin or CAV-Apoptin in several cancer cell lines triggered apoptosis at comparable levels. These findings indicate a potential anti-cancer role for HGyV-Apoptin

    Synthesis and evaluation of 3-amino/guanidine substituted phenyl oxazoles as a novel class of LSD1 inhibitors with anti-proliferative properties

    Get PDF
    A series of functionalized phenyl oxazole derivatives was designed, synthesized and screened in vitro for their activities against LSD1 and for effects on viability of cervical and breast cancer cells, and in vivo for effects using zebrafish embryos. These compounds are likely to act via multiple epigenetic mechanisms specific to cancer cells including LSD1 inhibition

    Enhanced Hsp70 Expression Protects against Acute Lung Injury by Modulating Apoptotic Pathways

    Get PDF
    The Acute respiratory distress syndrome (ARDS) is a highly lethal inflammatory lung disorder. Apoptosis plays a key role in its pathogenesis. We showed that an adenovirus expressing the 70 kDa heat shock protein Hsp70 (AdHSP) protected against sepsis-induced lung injury. In this study we tested the hypothesis that AdHSP attenuates apoptosis in sepsis-induced lung injury

    PP2A inactivation is a crucial step in triggering apoptin-induced tumor-selective cell killing

    Get PDF
    Apoptin (apoptosis-inducing protein) harbors tumor-selective characteristics making it a potential safe and effective anticancer agent. Apoptin becomes phosphorylated and induces apoptosis in a large panel of human tumor but not normal cells. Here, we used an in vitro oncogenic transformation assay to explore minimal cellular factors required for the activation of apoptin. Flag-apoptin was introduced into normal fibroblasts together with the transforming SV40 large T antigen (SV40 LT) and SV40 small t antigen (SV40 ST) antigens. We found that nuclear expression of SV40 ST in normal cells was sufficient to induce phosphorylation of apoptin. Mutational analysis showed that mutations disrupting the binding of ST to protein phosphatase 2A (PP2A) counteracted this effect. Knockdown of the ST-interacting PP2A–B56γ subunit in normal fibroblasts mimicked the effect of nuclear ST expression, resulting in induction of apoptin phosphorylation. The same effect was observed upon downregulation of the PP2A–B56δ subunit, which is targeted by protein kinase A (PKA). Apoptin interacts with the PKA-associating protein BCA3/AKIP1, and inhibition of PKA in tumor cells by treatment with H89 increased the phosphorylation of apoptin, whereas the PKA activator cAMP partially reduced it. We infer that inactivation of PP2A, in particular, of the B56γ and B56δ subunits is a crucial step in triggering apoptin-induced tumor-selective cell death

    Expression and Functional Studies of Ubiquitin C-Terminal Hydrolase L1 Regulated Genes

    Get PDF
    Deubiquitinating enzymes (DUBs) have been increasingly implicated in regulation of cellular processes, but a functional role for Ubiquitin C-terminal Hydrolases (UCHs), which has been largely relegated to processing of small ubiquitinated peptides, remains unexplored. One member of the UCH family, UCH L1, is expressed in a number of malignancies suggesting that this DUB might be involved in oncogenic processes, and increased expression and activity of UCH L1 have been detected in EBV-immortalized cell lines. Here we present an analysis of genes regulated by UCH L1 shown by microarray profiles obtained from cells in which expression of the gene was inhibited by RNAi. Microarray data were verified with subsequent real-time PCR analysis. We found that inhibition of UCH L1 activates genes that control apoptosis, cell cycle arrest and at the same time suppresses expression of genes involved in proliferation and migration pathways. These findings are complemented by biological assays for apoptosis, cell cycle progression and migration that support the data obtained from microarray analysis, and suggest that the multi-functional molecule UCH L1 plays a role in regulating principal pathways involved in oncogenesis

    CD38 promotes pristane-induced chronic inflammation and increases susceptibility to experimental lupus by an apoptosis-driven and TRPM2-dependent mechanism

    Get PDF
    In this study, we investigated the role of CD38 in a pristane-induced murine model of lupus. CD38-deficient (Cd38-/-) but not ART2-deficient (Art2-/-) mice developed less severe lupus compared to wild type (WT) mice, and their protective phenotype consisted of (i) decreased IFN-I-stimulated gene expression, (ii) decreased numbers of peritoneal CCR2hiLy6Chi inflammatory monocytes, TNF-α-producing Ly6G+ neutrophils and Ly6Clo monocytes/macrophages, (iii) decreased production of anti-single-stranded DNA and anti-nRNP autoantibodies, and (iv) ameliorated glomerulonephritis. Cd38-/- pristane-elicited peritoneal exudate cells had defective CCL2 and TNF-α secretion following TLR7 stimulation. However, Tnf-α and Cxcl12 gene expression in Cd38-/- bone marrow (BM) cells was intact, suggesting a CD38-independent TLR7/TNF-α/CXCL12 axis in the BM. Chemotactic responses of Cd38-/- Ly6Chi monocytes and Ly6G+ neutrophils were not impaired. However, Cd38-/- Ly6Chi monocytes and Ly6Clo monocytes/macrophages had defective apoptosis-mediated cell death. Importantly, mice lacking the cation channel TRPM2 (Trpm2-/-) exhibited very similar protection, with decreased numbers of PECs, and apoptotic Ly6Chi monocytes and Ly6Clo monocytes/macrophages compared to WT mice. These findings reveal a new role for CD38 in promoting aberrant inflammation and lupus-like autoimmunity via an apoptosis-driven mechanism. Furthermore, given the implications of CD38 in the activation of TRPM2, our data suggest that CD38 modulation of pristane-induced apoptosis is TRPM2-dependent.We would like to thank Dr. Yasuo Mori for providing the Tr pm 2−/− mice, Clara Sánchez for animal husbandry at the IPBLN-CSIC Animal Facility, and Thomas S. Simpler and Uma Mudunuru for animal husbandry at the University of Alabama at Birmingham (UAB). We would also like to thank Laura Montosa from the Centro de Instrumentación Cientifica (CIC) at the Universidad de Granada (UGR) for technical support with microscopy, as well as Mohamed Tassi and Ana Santos at CIC, UGR, and Sandra García-Jiménez, Victoria Romero-del-Amo, Gemma Palencia-López, and Samuel Ruiz-Santiago at Campus Formación Granada for tissue preparations, H&E staining, and other staining procedures. Work performed in the Sancho lab was supported in part by the European Commission in collaboration with the following Funding Agencies: (i) Junta de Andalucía (J.A.), Consejería Innovación Ciencia y Empresa y Consejería Educación y Ciencia, Project: PC08-CTS-04046 to J.S. and M.Z., and (ii) Ministerio de Economía y Competitividad (MINECO), Projects: SAF-2011-27261 to J.S. and M.Z. and SAF2014-55088-R to R.M. Work performed in the Lund lab was supported by funds provided by UAB.S

    A Kinome-wide screen identifies a CDKL5-SOX9 regulatory axis in epithelial cell death and kidney injury

    Get PDF
    © 2020, The Author(s). Renal tubular epithelial cells (RTECs) perform the essential function of maintaining the constancy of body fluid composition and volume. Toxic, inflammatory, or hypoxic-insults to RTECs can cause systemic fluid imbalance, electrolyte abnormalities and metabolic waste accumulation- manifesting as acute kidney injury (AKI), a common disorder associated with adverse long-term sequelae and high mortality. Here we report the results of a kinome-wide RNAi screen for cellular pathways involved in AKI-associated RTEC-dysfunction and cell death. Our screen and validation studies reveal an essential role of Cdkl5-kinase in RTEC cell death. In mouse models, genetic or pharmacological Cdkl5 inhibition mitigates nephrotoxic and ischemia-associated AKI. We propose that Cdkl5 is a stress-responsive kinase that promotes renal injury in part through phosphorylation-dependent suppression of pro-survival transcription regulator Sox9. These findings reveal a surprising non-neuronal function of Cdkl5, identify a pathogenic Cdkl5-Sox9 axis in epithelial cell-death, and support CDKL5 antagonism as a therapeutic approach for AKI
    • …
    corecore